7 research outputs found

    Androgen receptor mutations

    Get PDF
    Male sexual differentiation and development proceed under direct control of androgens. Androgen action is mediated by the intracellular androgen receptor, which belongs to the superfamily of ligand-dependent transcription factors. At least three pathological situations are associated with abnormal androgen receptor structure and function: androgen insensitivity syndrome (AIS), spinal and bulbar muscular atrophy (SBMA) and prostate cancer. In the X-linked androgen insensitivity syndrome, defects in the androgen receptor gene have prevented the normal development of both internal and external male structures in 46,XY individuals. Complete or gross deletions of the androgen receptor gene have not been found frequently in persons with complete androgen insensitivity syndrome. Point mutations at several different sites in exons 2–8 encoding the DNA- and androgen-binding domain, have been reported for partial and complete forms of androgen insensitivity. A relatively high number of mutations were reported in two different clusters in exon 5 and in exon 7. The number of mutations in exon 1 is extremely low and no mutations have been reported in the hinge region, located between the DNA-binding domain and the ligand-binding domain and which is encoded by the first half of exon 4. Androgen receptor gene mutations in prostate cancer are very rare and are reported only in exons 4–8. The X-linked spinal and bulbar muscle atrophy (SBMA; Kennedy's disease) is associated with an expanded length (> 40 residues) of one of the polyglutamine stretches in the N-terminal domain of the androgen receptor

    The androgen receptor: Functional structure and expression in transplanted human prostate tumors and prostate tumor cell lines

    Get PDF
    Abstract The growth of the majority of prostate tumors is androgen-dependent, for which the presence of a functional androgen receptor is a prerequisite. Tumor growth can be inhibited by blockade of androgen receptor action. However, this inhibition is transient. To study the role of the androgen receptor in androgen-dependent and androgen-independent prostate tumor cell growth, androgen receptor mRNA expression was monitored in six different human prostate tumor cell lines and tumors, which were grown either in vitro or by transplantation on (male) nude mice. Androgen receptor mRNA was clearly detectable in three androgen-dependent (sensitive) tumors and absent or low in three androgen-independent tumors. Growth of the LNCaP prostate tumor cell line can be stimulated both by androgens and by fetal calf serum. In the former situation androgen receptor mRNA expression is downregulated, whereas in the latter no effect on androgen receptor mRNA levels can be demonstrated. Sequence analysis showed that the androgen receptor gene from LNCaP cells contains a point mutation in the region encoding the steroid-binding domain, which confers an ACT coVon encoding a threonine residue to GCT, encoding alanine

    Androgen receptor abnormalities

    Get PDF
    The human androgen receptor is a member of the superfamily of steroid hormone receptors. Proper functioning of this protein is a prerequisite for normal male sexual differentiation and development. The cloning of the human androgen receptor cDNA and the elucidation of the genomic organization of the corresponding gene has enabled us to study androgen receptors in subjects with the clinical manifestation of androgen insensitivity and in a human prostate carcinoma cell line (LNCaP). Using PCR amplification, subcloning and sequencing of exons 2–8, we identified a G → T mutation in the androgen receptor gene of a subject with the complete form of androgen insensitivity, which inactivates the splice donor site at the exon 4/intron 4 boundary. This mutation causes the inactivation of a cryptic splice donor site in exon 4, which results in the deletion of 41 amino acids from the steroid binding domain. In two other independently arising cases we identified two different nucleotide alterations in codon 686 (GAC; aspartic acid) located in exon 4. One mutation (G → C) results in an aspartic acid → histidine substitution (with negligible androgen binding), whereas the other mutation (G → A) leads to an aspartic acid → asparagine substitution (normal androgen binding, but a rapidly dissociating androgen receptor complex). Sequence analysis of the androgen receptor in human LNCaP-cells (lymph node carcinoma of the prostate) revealed a point mutation (A → G) in codon 868 in exon 8 resulting in the substitution of threonine by alanine. This mutation is the cause of the altered steroid binding specificity of the LNCaP-cell androgen receptor. The functional consequences of the observed mutations with respect to protein expression, specific ligand binding and transcriptional activation, were established after transient expression of the mutant receptors in COS and HeLa cells. These findings illustrate that functional error

    Early nasogastric tube feeding in optimising treatment for hyperemesis gravidarum: The MOTHER randomised controlled trial (Maternal and Offspring outcomes after Treatment of HyperEmesis by Refeeding)

    Get PDF
    Background: Hyperemesis gravidarum (HG), or intractable vomiting during pregnancy, is the single most frequent cause of hospital admission in early pregnancy. HG has a major impact on maternal quality of life and has repeatedly been associated with poor pregnancy outcome such as low birth weight. Currently, women with HG are admitted to hospital for intravenous fluid replacement, without receiving specific nutritional attention. Nasogastric tube feeding is sometimes used as last resort treatment. At present no randomised trials on dietary or rehydration interventions have been performed. Small observational studies indicate that enteral tube feeding may have the ability to effectively treat dehydration and malnutrition and alleviate nausea and vomiting symptoms. We aim to evaluate the effectiveness of early enteral tube feeding in addition to standard care on nausea and vomiting symptoms and pregnancy outcomes in HG patients. Methods/Design: The MOTHER trial is a multicentre open label randomised controlled trial ( www.studies-obsgyn.nl/mother ). Women ≥ 18 years hospitalised for HG between 5 + 0 and 19 + 6 weeks gestation are eligible for participation. After informed consent participants are randomly allocated to standard care with intravenous rehydration or early enteral tube feeding in addition to standard care. All women keep a weekly diary to record symptoms and dietary intake until 20 weeks gestation. The primary outcome will be neonatal birth weight. Secondary outcomes will be the 24-h Pregnancy Unique Quantification of Emesis and nausea score (PUQE-24), maternal weight gain, dietary intake, duration of hospital stay, number of readmissions, quality of life and side-effects. Also gestational age at birth, placental weight, umbilical cord plasma lipid concentration and neonatal morbidity will be evaluated. Analysis will be according to the intention to treat principle. Discussion: With this trial we aim to clarify whether early enteral tube feeding is more effective in treating HG than intravenous rehydration alone and improves pregnancy outcome. Trial registration: Trial registration number: NTR4197. Date of registration: October 2nd 2013

    A mutation in the ligand binding domain of the androgen receptor of human LNCaP cells affects steroid binding characteristics and response to anti-androgens

    No full text
    Abstract INCaP prostate tumor cells contain an abnormal androgen receptor system. Progestagens, estradiol and anti-androgens can compete with androgens for binding to the androgen receptor and can stimulate both cell growth and excretion of prostate specific acid phosphatase. We have discovered in the INCaP androgen receptor a single point mutation changing the sense of codon 868 (Thr to Ala) in the ligand binding domain. Expression vectors containing the normal or mutated androgen receptor sequence were transfected into COS or Hela cells. Androgens, progestagens, estrogens and anti-androgens bind the mutated androgen receptor protein and activate the expression of an androgen-regulated reporter gene construct (GRE-tk-CAT). The mutation therefore influences both binding and the induction of gene expression by different steroids and antisteroids
    corecore